120 research outputs found

    A Subset of Secreted Proteins in Ascites Can Predict Platinum-Free Interval in Ovarian Cancer

    Get PDF
    The time between the last cycle of chemotherapy and recurrence, the platinum-free interval (PFI), predicts overall survival in high-grade serous ovarian cancer (HGSOC). To identify secreted proteins associated with a shorter PFI, we utilized machine learning to predict the PFI from ascites composition. Ascites from stage III/IV HGSOC patients treated with neoadjuvant chemotherapy (NACT) or primary debulking surgery (PDS) were screened for secreted proteins and Lasso regression models were built to predict the PFI. Through regularization techniques, the number of analytes used in each model was reduced; to minimize overfitting, we utilized an analysis of model robustness. This resulted in models with 26 analytes and a root-mean-square error (RMSE) of 19 days for the NACT cohort and 16 analytes and an RMSE of 7 days for the PDS cohort. High concentrations of MMP-2 and EMMPRIN correlated with a shorter PFI in the NACT patients, whereas high concentrations of uPA Urokinase and MMP-3 correlated with a shorter PFI in PDS patients. Our results suggest that the analysis of ascites may be useful for outcome prediction and identified factors in the tumor microenvironment that may lead to worse outcomes. Our approach to tuning for model stability, rather than only model accuracy, may be applicable to other biomarker discovery tasks

    Clinical Value of 18F-fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in Response Evaluation after Primary Treatment of Advanced Epithelial Ovarian Cancer

    Get PDF
    Aims: To prospectively evaluate the use of F-18-fluorodeoxyglucose positron emission tomography/computed tomography (F-18-FDG-PET/CT) in the definition of the treatment response after primary treatment of advanced epithelial ovarian cancer (EOC). Materials and methods: Forty-nine patients with advanced EOC had an F-18-FDG PET/CT scan before and after primary treatment. The treatment response was defined with the currently used radiological and serological Response Criteria in Solid Tumors (RECIST1.1/GCIC) criteria and the modified PET Response Criteria in Solid Tumors (PERCIST). The concordance of the two methods was analysed. If the patient had a complete response to primary treatment by conventional criteria, the end of treatment F-18-FDG PET/CT scan (etPET/CT) was not opened until retrospectively at the time of disease progression. The ability of etPET/CT to predict the time to disease recurrence was analysed. The recurrence patterns were observed with an F-18-FDG PET/CT at the first relapse. Results: The agreement of the RECIST1.1/GCIC and modified PERCIST criteria in defining the primary treatment response in the whole patient cohort was good (weighted kappa coefficient = 0.78 ). Of the complete responders (n = 28), 34% had metabolically active lesions present in the etPET/CT, most typically in the lymph nodes. The same anatomical sites tended to activate at disease relapse, but were seldom the only site of relapse. In patients with widespread intra-abdominal carsinosis at diagnosis, the definition of metabolic response was challenging due to problems in distinguishing the physiological FDG accumulation in the bowel loops from the residual tumour in the same area. The presence of metabolically active lesions in the etPET/CT did not predict earlier disease relapse in the complete responders. Conclusions: In the present study, etPET/CT revealed metabolically active lesions in complete responders after EOC primary therapy, but they were insignificant for the patient's prognosis. The current study does not favour routine use of F-18-FDG PET/CT after EOC primary treatment for complete responders. (C) 2018 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.Peer reviewe

    Lymphatic endothelium stimulates melanoma metastasis and invasion via MMP14-dependent Notch3 and b1-integrin activation

    Get PDF
    Lymphatic invasion and lymph node metastasis correlate with poor clinical outcome in melanoma. However, the mechanisms of lymphatic dissemination in distant metastasis remain incompletely understood. We show here that exposure of expansively growing human WM852 melanoma cells, but not singly invasive Bowes cells, to lymphatic endothelial cells (LEC) in 3D co-culture facilitates melanoma distant organ metastasis in mice. To dissect the underlying molecular mechanisms, we established LEC co-cultures with different melanoma cells originating from primary tumors or metastases. Notably, the expansively growing metastatic melanoma cells adopted an invasively sprouting phenotype in 3D matrix that was dependent on MMP14, Notch3 and β1-integrin. Unexpectedly, MMP14 was necessary for LEC-induced Notch3 induction and coincident β1-integrin activation. Moreover, MMP14 and Notch3 were required for LEC-mediated metastasis of zebrafish xenografts. This study uncovers a unique mechanism whereby LEC contact promotes melanoma metastasis by inducing a reversible switch from 3D growth to invasively sprouting cell phenotype

    A Strategy For Identifying Putative Causes Of Gene Expression Variation In Human Cancer

    Get PDF
    There is often a need to predict the impact of alterations in one variable on another variable. This is especially the case in cancer research, where much effort has been made to carry out large-scale gene expression screening by microarray techniques. However, the causes of this variability from one cancer to another and from one gene to another often remain unknown. In this study we present a systematic procedure for finding genes whose expression is altered by an intrinsic or extrinsic explanatory phenomenon. The procedure has three stages: preprocessing, data integration and statistical analysis. We tested and verified the utility of this approach in a study, where expression and copy number of 13,824 genes were determined in 14 breast cancer samples. The expression of 270 genes could be explained by the variability of gene copy number. These genes may represent an important set of primary, genetically "damaged" genes that drive cancer progression

    Alternative splicing discriminates molecular subtypes and has prognostic impact in diffuse large B-cell lymphoma

    Get PDF
    Effect of alternative splicing (AS) on diffuse large B-cell lymphoma (DLBCL) pathogenesis and survival has not been systematically addressed. Here, we compared differentially expressed genes and exons in association with survival after chemoimmunotherapy, and between germinal center B-cell like (GCB) and activated B-cell like (ABC) DLBCLs. Genome-wide exon array-based screen was performed from samples of 38 clinically high-risk patients who were treated in a Nordic phase II study with dose-dense chemoimmunotherapy and central nervous system prophylaxis. The exon expression profile separated the patients according to molecular subgroups and survival better than the gene expression profile. Pathway analyses revealed enrichment of AS genes in inflammation and adhesion-related processes, and in signal transduction, such as phosphatidylinositol signaling system and adenosine triphosphate binding cassette transporters. Altogether, 49% of AS-related exons were protein coding, and domain prediction showed 28% of such exons to include a functional domain, such as transmembrane helix domain or phosphorylation sites. Validation in an independent cohort of 92 DLBCL samples subjected to RNA-sequencing confirmed differential exon usage of selected genes and association of AS with molecular subtypes and survival. The results indicate that AS events are able to discriminate GCB and ABC DLBCLs and have prognostic impact in DLBCL.Peer reviewe

    Reproducibility of the computational fluid dynamic analysis of a cerebral aneurysm monitored over a decade

    Get PDF
    Computational fluid dynamics (CFD) simulations are increasingly utilised to evaluate intracranial aneurysm (IA) haemodynamics to aid in the prediction of morphological changes and rupture risk. However, these models vary and differences in published results warrant the investigation of IA-CFD reproducibility. This study aims to explore sources of intra-team variability and determine its impact on the aneurysm morphology and CFD parameters. A team of four operators were given six sets of magnetic resonance angiography data spanning a decade from one patient with a middle cerebral aneurysm. All operators were given the same protocol and software for model reconstruction and numerical analysis. The morphology and haemodynamics of the operator models were then compared. The segmentation, smoothing factor, inlet and outflow branch lengths were found to cause intra-team variability. There was 80% reproducibility in the time-averaged wall shear stress distribution among operators with the major difference attributed to the level of smoothing. Based on these findings, it was concluded that the clinical applicability of CFD simulations may be feasible if a standardised segmentation protocol is developed. Moreover, when analysing the aneurysm shape change over a decade, it was noted that the co-existence of positive and negative values of the wall shear stress divergence (WSSD) contributed to the growth of a daughter sac

    Virtual clinical trials identify effective combination therapies in ovarian cancer

    Get PDF
    A major issue in oncology is the high failure rate of translating preclinical results in successful clinical trials. Using a virtual clinical trial simulations approach, we present a mathematical framework to estimate the added value of combinatorial treatments in ovarian cancer. This approach was applied to identify effective targeted therapies that can be combined with the platinum-taxane regimen and overcome platinum resistance in high-grade serous ovarian cancer. We modeled and evaluated the effectiveness of three drugs that target the main platinum resistance mechanisms, which have shown promising efficacy in vitro, in vivo, and early clinical trials. Our results show that drugs resensitizing chemoresistant cells are superior to those aimed at triggering apoptosis or increasing the bioavailability of platinum. Our results further show that the benefit of using biomarker stratification in clinical trials is dependent on the efficacy of the drug and tumor composition. The mathematical framework presented herein is suitable for systematically testing various drug combinations and clinical trial designs in solid cancers

    Origins and Impacts of New Mammalian Exons

    Get PDF
    Mammalian genes are composed of exons, but the evolutionary origins and functions of new internal exons are poorly understood. Here, we analyzed patterns of exon gain using deep cDNA sequencing data from five mammals and one bird, identifying thousands of species-and lineage-specific exons. Most new exons derived from unique rather than repetitive intronic sequence. Unlike exons conserved across mammals, species-specific internal exons were mostly located in 5' UTRs and alternatively spliced. They were associated with upstream intronic deletions, increased nucleosome occupancy, and RNA polymerase II pausing. Genes containing new internal exons had increased gene expression, but only in tissues in which the exon was included. Increased expression correlated with the level of exon inclusion, promoter proximity, and signatures of cotranscriptional splicing. Altogether, these findings suggest that increased splicing at the 5' ends of genes enhances expression and that changes in 5' end splicing alter gene expression between tissues and between species.Peer reviewe

    High frequency of TTK mutations in microsatellite-unstable colorectal cancer and evaluation of their effect on spindle assembly checkpoint

    Get PDF
    Frameshift mutations frequently accumulate in microsatellite-unstable colorectal cancers (MSI CRCs) typically leading to downregulation of the target genes due to nonsense-mediated messenger RNA decay. However, frameshift mutations that occur in the 3' end of the coding regions can escape decay, which has largely been ignored in previous works. In this study, we characterized nonsense-mediated decay-escaping frameshift mutations in MSI CRC in an unbiased, genome wide manner. Combining bioinformatic search with expression profiling, we identified genes that were predicted to escape decay after a deletion in a microsatellite repeat. These repeats, located in 258 genes, were initially sequenced in 30 MSI CRC samples. The mitotic checkpoint kinase TTK was found to harbor decay-escaping heterozygous mutations in exon 22 in 59% (105/179) of MSI CRCs, which is notably more than previously reported. Additional novel deletions were found in exon 5, raising the mutation frequency to 66%. The exon 22 of TTK contains an A(9)-G(4)-A(7) locus, in which the most common mutation was a mononucleotide deletion in the A(9) (c.2560delA). When compared with identical non-coding repeats, TTK was found to be mutated significantly more often than expected without selective advantage. Since TTK inhibition is known to induce override of the mitotic spindle assembly checkpoint (SAC), we challenged mutated cancer cells with the microtubule-stabilizing drug paclitaxel. No evidence of checkpoint weakening was observed. As a conclusion, heterozygous TTK mutations occur at a high frequency in MSI CRCs. Unexpectedly, the plausible selective advantage in tumourigenesis does not appear to be related to SAC
    • …
    corecore